
Providing RPG Web Services

Presented by

Scott Klement
http://www.scottklement.com

© 2012-2025, Scott Klement

"A computer once beat me at chess, but it was no match
for me at kick boxing." — Emo Philips

on IBM i

2

Our Agenda

1. Introduction
• How do they work?
• What are JSON and XML?

2. REST web service with IBM's IWS

3. Writing your own from the ground-up with
Apache.

4. Discussion/wrap-up

Agenda for this session:

7

How Do They Work?

HTTP starts with a request for the server
• Can include a document (XML, JSON, etc)
• Document can contain "input parameters"

HTTP then runs server-side program
• input document is given to program
• HTTP waits til program completes.
• program outputs a new document (XML, JSON, etc)
• document contains "output parameters"
• document is returned to calling program.

8

JSON and XML to Represent a DS

[
 {
 "custno": 1000,
 "name": "ACME, Inc"
 },
 {
 "custno": 2000,
 "name": "Industrial Supply Limited"
 }
]

<list>
 <cust>
 <custno>1000</custno>
 <name>Acme, Inc</name>
 </cust>
 <cust>
 <custno>2000</custno>
 <name>Industrial Supply Limited</name>
 </cust>
</list>

D list ds qualified
D dim(2)
D custno 4p 0
D name 25a

Array of data structures
in RPG…

Array of data structures
in JSON

Array of data structures
in XML

9

Without Adding Spacing for Humans

[{"custno": 1000,"name": "ACME, Inc"},{"custno": 2000,
"name": "Industrial Supply Limited"}]

<list><cust><custno>1000</custno><name>ACME, Inc</name
></cust><cust><custno>2000</custno><name>Industrial S
upply Limited</name></cust></list>

92 bytes

142 bytes

In this simple "textbook" example, that's a 35% size reduction.

50 bytes doesn't matter, but sometimes these documents can be
megabytes long – so a 35% reduction can be important.

…and programs process JSON faster, too!

10

IBM's Integrated Web Services Server

IBM provides a Web Services (aka Web API, aka REST API) tool with IBM i at
no extra charge!

The tool takes care of all of the HTTP and XML/JSON work for you!

It's called the Integrated Web Services tool.

https://www.ibm.com/support/pages/integrated-web-services-
ibm-i-web-services-made-easy

Requirements:
• IBM i operating system
• 57xx-SS1, opt 30: QShell
• 57xx-SS1, opt 33: PASE
• 57xx-JV1, opt 14 (or higher): Java
• 57xx-DG1 -- the HTTP server (powered by Apache)

Make sure you have the latest TR, cum & group PTFs installed.

11

Let's Get Started!

The HTTP server administration tool runs in
IBM Navigator for i

• If this isn’t already started, you can start it with:
STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

• Point browser at:
http://your-system:2001/

• Sign-in
• Click “Internet Configurations” (old nav)

 or "Bookmarks" (new nav)
• Click “IBM Web Administration for i"

12

IBM Navigator for i (old nav)

Click "Internet
Configurations"

13

Internet Configurations (old nav)

IBM Web
Administration for i

14

IBM Navigator for i (new nav)

Double-Click the IBM i
system to work with

15

Bookmarks (new nav)

Open the "Bookmarks"
item in the lower-left,
and click "IBM Web
Administration for I"

16

Web Administration for i

The IWS is under
"Create New Web
Services Server"

The same link is up
here as well – and

is available
throughout the tool

from this link.

17

Create IWS Server (1 of 4)

Server name is used to
generate stuff like object

names, so must be a valid
IBM i object name (10 chars

or less.)

Description can be whatever
you want… should explain

what the server is to be used
for.

18

Create IWS Server (2 of 4)

Two servers are needed

1. One to run Java (application
server)

2. One that handles the web
communications (HTTP server)

A third port is used to communicate
commands between them.

Port numbers must be unique
system-wide.

The wizard will provide defaults that
should work.

19

Create IWS Server (3 of 4)

Here you choose the userid
that the web services server

(but not necessarily your RPG
application) will run under.

The default will be the IBM-
supplied profile QWSERVICE.

But you can specify a
different one if you want. This
user will own all of the objects

needed to run a server that
sits and waits for web service

requests.

20

Create IWS Server (4 of 4)

This last step shows a summary
of your settings.

It's worth making a note of the
Server URL and the Context Root

that it has chosen.

21

We Now Have a Server!

It takes a few seconds to build,
but soon you'll have a server, and

see this screen.

To get back here at a later date,
click on the "Manage" tab, then
the "Application Servers" sub-

tab, and select your server from
the "server" drop-down list.

28

GETCUST RPG Program (1 of 2)

PCML with parameter info will
be embedded in the module

and program objects.

Since there's no DCL-PROC,
the DCL-PI works like the old

*ENTRY PLIST

This PREFIX causes the file to
be read into the CUST data

struct.

Ctl-Opt DFTACTGRP(*NO) ACTGRP('WEBAPI') PGMINFO(*PCML:*MODULE);

Dcl-F CUSTFILE Usage(*Input) Keyed PREFIX('CUST.');

Dcl-DS CUST ext extname('CUSTFILE') qualified End-DS;

Dcl-PI *N;
 CustNo like(Cust.Custno);
 Name like(Cust.Name);
 Street like(Cust.Street);
 City like(Cust.City);
 State like(Cust.State);
 Postal like(Cust.Postal);
End-PI;

Dcl-PR QMHSNDPM ExtPgm('QMHSNDPM');
 MessageID Char(7) Const;
 QualMsgF Char(20) Const;
 MsgData Char(32767) Const options(*varsize);
 MsgDtaLen Int(10) Const;
 MsgType Char(10) Const;
 CallStkEnt Char(10) Const;
 CallStkCnt Int(10) Const;
 MessageKey Char(4);
 ErrorCode Char(8192) options(*varsize);
End-PR;

29

GETCUST RPG Program (2 of 2)

This API is equivalent
to the CL

SNDPGMMSG
command, and

causes my program
to end with an

exception ("halt")

When there are no
errors, I simply return

my output via the
parameter list. IWS

takes care of creating
JSON or XML for me!

Dcl-DS err qualified;
 bytesProv Int(10) inz(0);
 bytesAvail Int(10) inz(0);

End-DS;

Dcl-S MsgDta Varchar(1000);
Dcl-S MsgKey Char(4);
Dcl-S x Int(10);

chain CustNo CUSTFILE;
if not %found;
 msgdta = 'Customer not found.';
 QMHSNDPM('CPF9897': 'QCPFMSG *LIBL': msgdta:

%len(msgdta): '*ESCAPE'
 : '*PGMBDY': 1: MsgKey: err);

else;
 Custno = Cust.Custno;
 Name = Cust.name;
 Street = Cust.Street;
 City = Cust.City;
 State = Cust.State;
 Postal = Cust.Postal;

endif;

*inlr = *on;

30

PCML so IWS Knows Our Parameters

Our GETCUST example gets input and output as normal parameters. To use
these with IWS, we need to tell IWS what these parameters are. This is done
with an XML document that is generated by the RPG compiler.

PCML = Program Call Markup Language

• A flavor of XML that describes a program's (or *SRVPGM's) parameters.

• Can be generated for you by the RPG compiler, and stored in the IFS:

CRTBNDRPG PGM(xyz) SRCFILE(QRPGLESRC)
 PGMINFO(*PCML)
 INFOSTMF('/path/to/myfile.pcml')

Ctl-Opt PGMINFO(*PCML:*MODULE);

• Or can be embedded into the module/program objects themselves, with an
H-spec or CTL-OPT:

31

GETCUST as a REST API

Remember that REST (sometimes called 'RESTful') web services differ from
SOAP in that:
• the URL points to a "noun" (or "resource")
• the HTTP method specifies a "verb" like GET, POST, PUT or DELETE.

(Similar to a database Create, Read, Update, Delete…)
• REST sounds nicer than CRUD, haha.

IWS structures the URL like this:

http://address:port/context-root/root-resource/path-template

• context-root = Distinguishes from other servers. The default context-root is
/web/services, but you can change this in the server properties.

• root-resource = identifies the type of resource (or "noun") we're working
with. In our example, we'll use "/cust" to identify a customer. The IWS will
also use this to determine which program to run.

• path-template = identifies the variables/parameters that distinguish this
noun from others. In our example, it'll be the customer number.

32

Example REST Input

For our example, we will use this URL:

http://address:port/web/services/cust/495
Our URL will represent a customer record. Then we can:
• GET <url> the customer to see the address.
• potentially POST <url> the customer to create a new customer record
• potentially PUT <url> the customer to update an existing customer record
• potentially DELETE <url> to remove the customer record.

Though, in this particular example, our requirements are only to retrieve customer
details, so we won't do all four possible verbs, we'll only do GET.

That means in IWS terminology:
• /web/services is the context root.
• /cust is the root resource (and will point to our GETCUST program)
• /495 (or any other customer number) is the path template.

With that in mind, we're off to see the wizard… the wonderful wizard of REST.

33

Deploy a New REST API

To add a program (such as our
'Get Customer' example) click

"Deploy New Service"

34

REST Wizard (1 of 10)

The type (dropdown) should be REST.

 You can use a program or SQL statement – for this example, I'll specify an ILE program and type the
IFS path of the GETCUST program.

35

REST Wizard (2 of 10)

resource name is 'cust',
because we want /cust/ in

the URL.

description can be
whatever you want.

PATH template deserves
its own slide J

36

Path Templates

You can make your URL as sophisticated as you like with a REST service. For
example:
• Maybe there are multiple path variables separated by slashes
• Maybe they allow only numeric values
• Maybe they allow only letters, or only uppercase letters, or only lowercase, or

both letters and numbers
• maybe they have to have certain punctuation, like slashes in a date, or

dashes in a phone number.

Path templates are how you configure all of that. They have a syntax like:

{ identifier : regular expression }

• The identifier will be used later to map the variable into a program's
parameter.

• The regular expression is used to tell IWS what is allowed in the parameter

37

REST Wizard (3 of 10)

Secure transport
determines whether or not

SSL (TLS) is required.

Authentication method
*BASIC will require a

userid/password.

38

Path Template Examples

For our example, we want /495 (or any other customer number) in the URL, so
we do:
/{custno:\d+} identifier=custno, and regular expression \d+ means
 \d = any digit, + = one or more

As a more sophisticated example, consider a web service that returns inventory in a
particular warehouse location. The path template might identify a warehouse location in
this syntax
/Milwaukee/202/Freezer1/B/12/C

These identify City, Building, Room, Aisle, Slot and Shelf. The path template might be
/{city:\w+}/{bldg:\d+}/{room:\w+}/{aisle:[A-Z]}/{slot:\d\d}/{shelf:[A-E]}

\w+ = one or more of A-Z, a-z or 0-9 characters.
Aisle is only one letter, but can be A-Z (capital)
slot is always a two-digit number, from 00-99, \d\d means two numeric digits
Shelf is always capital letters A,B,C,D or E.

IWS uses Java regular expression syntax. A tutorial can be found here:
https://docs.oracle.com/javase/tutorial/essential/regex/

39

REST Wizard (4 of 10)

"Detect length fields" will
look for fields named

ending with _LENGTH and
treat them as the number

of elements for any arrays.

We also need to tell it
which parameters are used
for input and output from

our program.

40

REST Wizard (5 of 10)

We can control how blanks are
trimmed from character fields.

We can also control which HTTP
status codes are returned for

success/failures.

41

REST Wizard (6 of 10)

Since this example just retrieves a
customer, I used the "GET" method.

The output document will be JSON.

The input parameter comes from the
"Path" portion of the URL.

42

REST Wizard (7 of 10)

Similar to when the server was
created, we can specify which

userid this particular API will run
under.

The most secure method is to create
a user specially for this, and give it
the minimum possible authority for

the API to work.

43

REST Wizard (8 of 10)

This step lets you configure a library
list that will be in effect when the

API is run.

44

REST Wizard (9 of 10)

This screen lets you control which
environment variables will be set

when the API runs.

This is a bit more "advanced", but if
you wanted to know the IP address
of the API consumer, for example,

you could enable the
REMOTE_ADDR variable, then

retrieve that variable in your RPG
program.

45

REST Wizard (10 of 10)

The last step shows all of the
options you selected (for your

review).

When you click FINISH it will create
the REST API

46

Wait For the API to Install

The hourglass indicates that
creating the API is in progress.

Click "Refresh" a couple of times
until it shows as "Running"

47

SOAPUI REST Testing (1 of 2)

Since it's hard to test other methods (besides GET) in a browser, it's good to
have other alternatives. Recent versions of SoapUI have nice tools for testing
REST services as well.

Choose File / New REST Project, and type the URL, then click OK

48

SOAPUI REST Testing (2 of 2)
Here you can change the method
and the resource ("noun") easily,

and click the green "play" button to
try it.

It can also help make XML, JSON or
HTML output "prettier" by

formatting it for you.

49

Do It Yourself

IWS is a neat tool, but:

• Supports only XML or JSON
• Very limited options for security
• doesn't always perform well

Writing your own:
• Gives you complete control
• Performs as fast as your RPG code can go.
• Requires more knowledge/work of web service technologies such as XML and JSON
• You can accept/return data in any format you like. (CSV? PDF? Excel? No problem.)
• Write your own security. UserId/Password? Crypto? do whatever you want.
• The only limitation is your imagination.

50

Create an HTTP Server

Click “Setup” to create a
new web server.

Do not create a web
services server at this
time. That is for IBM’s

Integrated Web Services
tool, currently used only

for SOAP.

Instead, create a “normal”
HTTP server.

51

The “Server Name”

The “Server Name”
controls:
•The job name of the
server jobs
•The IFS directory where
config is stoed
•The server name you
select when editing
configs
•The server name you
select when
starting/stopping the
server.

52

Server Root

The “server root” is the
spot in the IFS where all
the files for this server
should go.
By convention, it’s always
/www/ + server name.

53

Document Root

The “document root” is the default
location of files, programs, images, etc.
Anything in here is accessible over a
network from your HTTP server.
By convention, it’s always specified as
/www/ + server name + /htdocs

54

Set Port Number

This is where you specify the port
number that we determined on the
“Manage / All Servers” screen.

55

Access Log

An “access log” will log all accesses
made to the HTTP server. Useful to track
server activity.

56

Access Log Retension

Over time, access logs can get quite
large. The HTTP server can automatically
delete data over a certain age.
I like to keep mine for about a week.

57

Summary Screen

This screen summarizes the settings
you provided. When you click
“Finish”, it will create the server
instance.

58

URL Tells Apache What to Call

ScriptAlias /cust /qsys.lib/restful.lib/custinfo.pgm
<Directory /qsys.lib/restful.lib>
 Require all granted
</Directory>

To get started with REST, let's tell Apache how to call our program.

• Just add the preceding code to an already working Apache instance on IBM i.
• ScriptAlias tells apache that you want to run a program.
• If URL starts with /cust, Apache will CALL PGM(RESTFUL/CUSTINFO)
• Our REST web service can be run from any IP address (Allow from all).

http://ibmi.example.com/cust/495

• Browser connects to: ibmi.example.com
• Apache sees the /cust and calls RESTFUL/CUSTINFO
• Our program can read the 495 (customer number) from the URL itself.

59

Apache 2.4 Update

<Directory /qsys.lib/restful.lib>
 Require all granted
</Directory>

Starting with IBM i 7.2, we have Apache 2.4. They recommend using "require"
instead of "Order"

Newer syntax:

<Directory /qsys.lib/restful.lib>
 Order allow,deny
 Allow from all
</Directory>

Older syntax:

If you are using an older release, use this second syntax.

60

Edit Configuration File

Scroll down to the “Tools” section.

Use “edit configuration file” to enter
Apache directives.

Tip: You can use “Display
configuration file” to check for errors
in the Apache configuration.

61

Alternate Recipe

ScriptAlias /cust /qsys.lib/restful.lib/custinfo.pgm

ScriptAliasMatch /rest/([a-z0-9]*)/.* /qsys.lib/restful.lib/$1.pgm

<Directory /qsys.lib/restful.lib>
 Require all granted
</Directory>

The last slide shows how to make /cust always do a call restful/custinfo.

But, perhaps you’d rather not have to key a separate Apache configuration for
each restful web service you want to run? There are pros and cons to this:

http://ibmi.example.com/rest/custinfo/495

• Don’t have to stop/start server to add
new service.

• Any program left in RESTFUL library can
be run from outside. If the wrong
program gets compiled into this library, it
could be a security hole.

62

Add Custom Directives

Scroll down to the bottom of the file.

Type the directives (as shown) and
click “Apply” to save your changes.

63

Start New Apache Server

Before starting, click “Display
Configuration File” and make sure it
does not show any errors.

Then, click the green “start” button
at the top to start your new server.

You can also start from 5250 with:
STRTCPSVR *HTTP HTTPSVR(MYDEMO)

64

RESTful Example

GET http://i.scottklement.com:8500/cust/495

Easier way to think of REST
• input can come from the URL, cookies, headers or an uploaded document
• if a document – it can be anything (XML, JSON or something else...)
• output has no standard… can be anything (but usually is XML or JSON)

For example, you might have a web service that takes a customer number as
input and returns that customer's address.

{
 "CUSTNO": 495,
 "NAME": "Acme Foods",
 "STREET": "1100 NW 33rd Street",
 "CITY": "Minneapolis",
 "STATE": "MN",
 "POSTAL": "43064-2121"
}

In
pu

t
O

ut
pu

t

65

This is CGI -- But It's Not HTML

Web servers (HTTP servers) have a standard way of calling a program on the
local system. It's known as Common Gateway Interface (CGI)

• The URL you were called from is available via the REQUEST_URI env. var

• If a document is uploaded to your program you can retrieve it from "standard
input".

• To write data back from your program to Apache (and ultimately the web
service consumer) you write your data to "standard output"

To accomplish this, I'm going to use 3 different APIs (all provided by IBM)
• QtmhRdStin ß reads standard input
• getenv ß retrieves an environment variable.
• QtmhWrStout ß writes data to standard output.

Or we can use the YAJL toolkit, which is free (open source) and will handle the
standard input and output for us when it interprets a JSON document.

Ctl-Opt OPTION(*SRCSTMT: *NODEBUGIO) DFTACTGRP(*NO);

Dcl-F CUSTFILE Usage(*Input) Keyed prefix('CUST.');
dcl-ds CUST ext extname('CUSTFILE') qualified end-ds;

Dcl-PR getenv Pointer extproc('getenv');
 var Pointer value options(*string);

End-PR;

dcl-s custno like(CUST.custno);
Dcl-S pos int(10);
Dcl-S uri varchar(1000);
Dcl-S json varchar(1000);
Dcl-C ID1 '/cust/';
Dcl-C ID2 '/custinfo/';

dcl-ds failure qualified;
 error varchar(100);

end-ds;

66

DIY REST Example (1 of 2)

getenv lets us retrieve
an environment

variable – the URL will
be in the

REQUEST_URI
variable.

We can generate JSON
from a DS using RPG's

DATA-GEN opcode.

So the CUST DS can be
output directly if all is

well.

If there's an error, we'll
put the message in the

FAILURE DS

67

DIY REST Example (2 of 2)

Custno is everything
after /cust/ in the URL

uri = %str(getenv('REQUEST_URI'));

monitor;
 pos = %scan(ID1: uri) + %len(ID1);
 custno = %int(%subst(uri:pos));

on-error;
 failure.error = 'Invalid URI';
 DATA-GEN failure %DATA(json) %GEN('YAJLDTAGEN'
 : '{ "http status": 500, "write to stdout": true }');
 return;

endmon;

chain custno CUSTFILE;
if not %found;
 failure.error = 'Unknown customer number';
 DATA-GEN failure %DATA(json) %GEN('YAJLDTAGEN'
 :'{ "http status": 500, "write to stdout": true }');
 return;

endif;

DATA-GEN cust %DATA(json) %GEN('YAJLDTAGEN'
 :'{ "http status": 200, "write to stdout": true }');

return;

REQUEST_URI will
contain

http://x.com/cust/495

If an error occurs,
generate a JSON

document from the
FAILURE DS.

If no errors, generate it
from the CUST DS.

"write to stdout"
causes YAJL to write
the result to Apache.

"http status" lets us set
the HTTP status code to
200 for success, 500 for

error.

monitor;
 pos = %scan(ID1: uri) + %len(ID1);
 custno = %int(%subst(uri:pos));

. . .

Dcl-C ID1 '/cust/';
Dcl-C ID2 '/custinfo/';
 .
 .
monitor;
 select;
 when %scan(ID1: uri) > 0;
 pos = %scan(ID1: uri) + %len(ID1);
 when %scan(ID2: uri) > 0;
 pos = %scan(ID2: uri) + %len(ID2);
 other;
 pos = 0;
 endsl;
 custno = %int(%subst(uri:pos));

. . . 68

Changes To Use W/Alt Recipe

To use the alternate Apache config (ScriptAliasMatch) change this code:

To this… it now works on anything after /cust/ or /custinfo/ in the URI

69

About Testing and Consuming DIY

There's nothing special about testing a DIY example. You call it the same as

any other (REST) web service – just use SoapUI (or a similar tool like

Postman), just as we did with the IWS example.

You'll notice that using the HTTP server isn't much harder than using the IWS

was – the code is nearly as simple (thanks to DATA-GEN and YAJL)

The DIY method is much more versatile, however, and performs better.

70

This Presentation

You can download a PDF copy of this presentation as well as
other related materials from:

http://www.scottklement.com/presentations/

The Sample Web Service Providers in this article are also
available at the preceding link.

Thank you!

